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Abstract—For a very small void in the material between much larger voids the influence of local
stress increases induced by the larger voids is studied numerically. The point of interest is whether
or not such local stress increases result in a cavitation instability at the tiny void, even if the average
overall stress levels are well below those required for unstable cavity growth. The analyses are based
on apn axisymmetric unit cell model with special boundary conditions, which allow for a relatively
simple investigation of a full three dimensional array of spherical voids, without having to solve the
full 3D numerical problem. For overall stress levels as large as those reached ahead of a blunting
crack tip, a cavitation instability at the small void, induced by interaction with the large voids, is
not found here. But the results show that localization of plastic flow in the unit cell plays an
important role. { 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In studies of ductile fracture mechanisms for metals the analysis of void growth to coales-
cence plays an important role. Early investigations considered the growth of a single void
in an infinite elastic-plastic solid (McClintock, 1968 ; Rice and Tracey, 1969), whereas later
micromechanical studies have incorporated the interaction between neighbouring voids
and the effect of a finite volume fraction of voids, by analysing a cell model representative
of a material containing a periodic array of identical voids (Needleman, 1972 ; Tvergaard,
1981, 1982a; Koplik and Needleman, 1988). Some of the analyses have been carried out
for cylindrical voids under transverse loading, while other studies consider more realistic
shapes, such as initially spherical voids.

In real void containing materials there is a distribution of void sizes, resulting from
different sizes of the inclusions at which the voids nucleate. different amounts of growth
since nucleation of each void, etc. To gain some insight in the effect of different void sizes,
Tvergaard (1996a) has recently used a special axisymmetric cell model to study a material,
where a large void is surrounded by smaller voids, and vice versa. This cell model is
analogous to a model introduced to study metal matrix composites with a transversely
staggered array of reinforcing short fibres (Tvergaard, 1990). Various void size differences
were considered, with the larger void volume up to seven times that of the smaller void,
and it was found that interaction can lead to significant differences between the growth
rates of different size voids, except in a range of very small void volume fractions where
interaction disappears. At very high stress triaxialities. where a cavitation instability is
expected (Ball, 1982 ; Ashby ef «l., 1989 ; Huang et /., 1991 ; Tvergaard er af., 1992), it was
found that only one of the voids in the unit cell grows very large in an unstable manner,
while the other void stops growing.

Much larger initial void size differences have been considered by Faleskog and Shih
(1997). who have used a plane strain model with parallel cylindrical voids. These authors
have focused on the fact that the stress levels in the region between two larger voids are
increased relative to the average stress state in the material, and therefore a very small void
growing in this region can experience unstable growth, even when the average stress levels
in the matertal are well below the cavitation instability level. This idea is interesting, as it
could possibly explain occurrence of unstable cavity growth in front of a blunting crack tip
in a homogeneous elastic-plastic material, even though the peak stress levels at a blunting
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crack tip are well below the stress levels required for cavitation instabilities to occur.
However, these predictions rely on the cylindrical void shape, which is not very realistic. If
the void shapes are more like spherical, it is expected that the stress increase between two
larger voids will decay much more rapidly with increasing void spacing.

In the present paper the axisymmetric cell model of Tvergaard (1996) is used to
investigate the behaviour of very small voids growing in the region between two larger
growing voids. This cell model is able to represent reasonably realistic spherical void shapes.
and therefore the study allows for an evaluation of how the effect proposed by Faleskog
and Shih (1997) would depend on deviations from their assumption of cylindrical voids.
Although the cell models presume macroscopically uniform stress states, the results will be
used here to draw some conclusions on the effect of different void sizes interacting in a
blunting crack tip region.

2. PROBLEM FORMULATION AND NUMERICAL METHOD

The axisymmetric cell model to be used here is identical to that used in Tvergaard
(1996), considering a periodic array of voids as illustrated in Fig. |. The voids of two
different sizes are initially spherical with radii R, and R,, they have the spacing 4, in the
axial direction and the spacings B, in the two transverse directions. The main difference
from the previous computation is that in the present paper the small voids are much smaller
than the larger ones, and that the spacing A, in axial direction is taken to be significantly
larger than the spacing B, in transverse direction. Thus, the cell model is here used to
analyse a material with layers of voids normal to the axial direction, where the layers are
so well separated from one another that there is practically no interaction between them.
The focus here is on interaction between different size voids in one of the layers, which
could represent voids in the plane of a growing crack. ahead of the crack tip.

The use of the axisymmetric unit cell to analyse materials with transversely staggered
fibres or voids has been discussed in detail by Tvergaard (1990, 1996), and therefore only
a few basic relations will be reviewed here. The initial radius of the axisymmetric unit cell
is chosen as R, = B/n'~, in order that the void volume fraction of the cell is equal to that
of the model material in Fig. 1. The cell model (Fig. 2) is analysed in a cylindrical reference
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Fig. 1. Periodic array of spherical voids with two different void sizes. (a) Cross-section along axial
direction. with void spacing A,. (b) Cross section normal to axial direction, with cell radius R,.
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Fig. 2. Axisymmetric cell model analysed numerically. with x' along the axial direction.
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coordinate system, where x' and x” are the axial and radial coordinates, while x* is the
circumferential angle. The displacement components and the nominal traction components
on reference base vectors are denoted by ' and 7°. The symmetry boundary conditions at
the ends of the cell are

U N
u' = — B 7- =0 at .\‘1 =0 (21)
I v 2 -1
U = — 5', T- =0 atx = A() (22)

where U is a constant. As the neighbouring cell is identical to the cell analysed but is rotated
180° so that its x' axis points in the opposite direction (see Fig. 1a), compatibility in the
axial direction requires that

W& = —u'(n), foréi=n, x =R, (2.3)

Here, ¢ and » are distances from the bottom and the top, respectively, of the cell in the
reference state (Fig. 2). Radial compatibility requires that the total cross-sectional area is
independent of the x' coordinate

[Ro +15 (O + R+ 17 (] = 2R, +ui). foré=pn, x' =R, 2.4)

where . is the radial displacement at the centre point Cindicated in Fig. 2. The equilibrium
conditions on the cell side are specified as

T =T, T =Ty, foré=pn x" =R, (2.5

The average logarithmic strains in the axial and transverse directions are ¢, = In(1+ U/l
and ¢, = (1 +ul/R,), respectively.

The average nominal stresses X,; are computed as the appropriate area averages of the
microscopic nominal stress components on the surface, noting that it is necessary to average
over both the cell analysed and one of the neighbouring cells of opposite kind. The axial
and transverse Cartesian stress components are X,; and X,, = X, respectively, for the
axisymmetric problem and all shear components vanish. Using the average strains ¢, and
&,, the average true stresses ¢, and a, are calculated from the nominal stress values.

When A, is much larger than B,, so that there is no void interaction in the axial
direction, it may appear that the model could be further simplified by cutting in the middle
of the unit cell and analysing on cach side of the cut individually. However, the interaction
of two neighbouring cylindrical cell models with different size voids would still have to be
accounted for. which would require boundary conditions like eqns (2.3)--(2.5). Therefore,
such an alternative strategy would not really represent a simplification,

The volume fractions of voids have been used by Tvergaard (1996) to specify void
growth behaviour, but these values are less relevant when the cell model is used to describe
interactions inside an isolated layer of voids. If the layer thickness is taken to be 2R,, the
nitial volume fractions inside the layer (f¥), and (/%), for the larger and smaller voids,
respectively, are

W R R
= -

-, (2.6)
3R, <0)

and the total initial void volume fraction inside the layer is /¥ = (f¥),+ (/¥),. It is noted
that multiplication of the values in (2.6) by 2R,/A4, gives the actual initial void volume
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fractions in the model material. In the present paper it will be more practical to specify
void growth in terms of the relative void volumes v, and v, defined by

vy = ViV, v =(ViV)s (2.7

where V,and ¥ denote the initial and current void volumes, respectively. The initially larger
void is denoted void No. 1.

It is noted that the use of a unit cell model enforces periodicity of the solution
throughout the deformation history. Thus, plastic flow localization can be represented, if
the periodicities are satisfied, but more general localization modes are excluded by the
procedure employed here.

The material is described by J, flow theory with isotropic hardening. A convected-
coordinate lagrangian formulation of the field equations is used, in which g; and G, are
metric tensors in the reference configuration and the current configuration, respectively,
with determinants ¢ and G, and n,, = é(G,/—_q,-,) 1s the lagrangian strain tensor. The con-
travariant components 77 of the Kirchhoff stress tensor on the current base vectors are
related to the components of the Cauchy stress tensor ¢’ by 1/ =(G/g)'“a". Then, in the
finite strain generalization of J, flow theory the incremental stress--strain relationship is of
the form t¥ = L"™',,, where the tensor of instantaneous moduli can be found in Hutchinson
(1973) or Tvergaard (1996). The uniaxial stress—strain behaviour is represented by

for e <o,

g,/ a\'"
—f fore > o,
Flo, :

where o, is the uniaxial yield stress, £ is Young’s modulus and N is the strain-hardening
exponent. The tangent modulus E, is the slope of the true stress vs. natural strain curve at
the stress level o,.

Equilibrium is specified in terms of the principle of virtual work

Mo

J 7on,;dV = J T0u.dS 2.9
[ Y

where V and S denote the reference volume and surface of the cell analysed, 77 are the
specified nominal surface tractions, and ' are the displacement components on the base
vectors of the cylindrical reference coordinate system. In terms of the displacement com-
ponents the lagrangian strain tensor is given by

]
My = 5 (U, w1, (2.10)

where (), denotes the covariant derivative in the reference frame. Approximate solutions
of (2.9) are obtained by a linear incremental method, using a finite element approximation
of the displacement fields. The elements used are quadrilaterals each built up of four
triangular axisymmetric linear-displacement elements. A fixed ratio p is enforced between
the average true stress o, and o, in the transverse and axial directions respectively

Gy = pa, (2.11)

A special Rayleigh—Ritz finite element method (Tvergaard, 1976) is used to implement the
boundary conditions, and also in some cases to prescribe a node displacement on one of
the void surfaces rather than the end displacement U, without applying a load on the void



Interaction of very small voids with larger voids 3993

surface. This improves the numerical stability near the occurrence of a cavitation instability,
where U — 0.

3. RESULTS

The materials to be analysed here are characterized by the material parameters
o,/E =10.003 and N = 0.1, and the value of Poisson’s ratio is taken to be v = 0.3. The ratio
of the average true stresses, p = a,/a}, is kept fixed in each case studied. Furthermore, the
initial mesh for different size voids is chosen such that relative to void size the meshes
around each void are nearly identical (see Fig. 3a). Thus, the number of elements and the
element size stretching along the void surface are identical for the two voids, and also in
radial direction the number of elements and the stretching are chosen to give equal size
clements relative to the different void radii. It has been found that such closely identical
meshes, relative to void size, are important in order to minimize the effect of mesh on the
predicted differences between the rates of growth of different size voids (Tvergaard, 1996).

In the first cases to be discussed the initial volume of the larger void is 7.0 times that
of the smaller void, so that (f*/f%), = 7.0, or (f}/f*), = 0.875. Furthermore, the void
spacing in axial direction is taken to be ten times the radius of the unit cell, 4o/R, = 10.
Thus, although the void spacings in the axial direction are relatively larger here, the void
size ratios are the same as those studied in several analyses of Tvergaard (1996a), and
therefore the interactions between neighbouring voids in the transverse direction should be
comparable. The principal stress ratio is here taken to be p = 0.5, and the computations
are illustrated in Figs 3 and 4.

Fig. 3 shows the initial undeformed mesh and three deformed meshes for a case where

*= (.04, which corresponds to R,/R, = 0.472. Stress-strain curves and curves describing
the void growth are shown in Fig. 4 for the same case, /¥ = 0.04, together with similar

w2

(a)

(b)

(c)

(d)
Fig. 3. Initial and deformed meshes for 4y/R, = 10, p = 0.5, fF= 0.04 and (/¥/f¥), = 7.0. (a) At
g =0, a,/0, =0.(b) Ate, == 0.051. ¢,/5, = 2.45. (C) At = 0.064, 5,/o. = 1.97. (d) At &, = 0.080,
o /o, = 1.14.
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Fig. 4. Stress—strain curves and void growth for 4,/R, = 10, p = 0.5 and (f,/¥), = 7.0. (a) Axial
tensile stress vs strain. (b) Total void volume vs strain. (¢) Growth of normalized void volumes.

curves for 10 times smaller voids and for 100 times smaller voids, respectively. Here, V/F;
denotes the sum of the void volumes divided by the initial sum, whereas ¢, and v, are similar
ratios (2.7) for the larger void and the smaller void, respectively. Fig. 3b shows the deformed
mesh at the maximum stress point, where ¢, = 0.051, g,/6, = 2.45, ViV, = 1.633, v, = 1.626,
and v./v, = 1.038. Immediately after this point localization of plastic flow occurs in the
layers containing the voids. so that most of the unit cell between the two voids experiences
elastic unloading. Figs 4a and 4b show that this localization gives rapidly increasing void
growth at the same time as the average tensile stress decays abruptly. Fig. 4¢ shows that
after localization the smaller void starts to grow much more rapidly than the larger one, as
can also be seen in Figs 3¢ and 3d. At the last stage. Fig. 3d, where & = 0.080 and
o0, = 114, 1t 1s clear that void coalescence is approaching, by necking of the ligament
between the neighbouring different size voids. Itis noted that due to the assumed symmetries
plastic flow localization is predicted at the voids at either end of the unit cell. In the absence
of such symmetry assumptions the simultaneous localization in many parallel layers would
be unstable, and plastic flow localization would occur in only one layer.

The results in Fig. 4 for smaller mitial void volume fractions show very similar
behaviour, except that the onset of localization is more delayed the smaller the voids. Thus,
for /¥ = 0.004 plastic flow localization starts at ¢, = 0.28 and for /%= 0.0004 localization
starts at ¢ = 0.51. For both these cases Fig. 4¢ clearly shows that initialty v/, grows
smaller than unity, so that the larger void grows relatively most rapidly. This is in very
good agreement with the behaviour found earlier (Fig. 9 in Tvergaard, 1996) for the same
range of void volume fractions. However, as soon as plastic flow localization occurs, the
trend is opposite, . > &), so that subsequently the ratio v,/ grows towards a value larger
than umty, as was also found for /¥ = 0.04.

In the following computations the focus is on much larger void size differences. in
order to investigate the behaviour of a very small void in the stress fields near a larger void.
This relates to the study of Faleskog and Shih (1997) for cylindrical voids; but more
realistic spherical void shapes are considered in the present computations, and there are
significant differences between the stress perturbations induced by spherical or cylindrical
voids, respectively. In Fig. 5, for 4,/R, = 10 as in Figs 3 and 4 and for the same material
parameters, the initial void volume fractions are specified by (%), =7x10"* and
(%, =10""ie R/R,= 0219 and R,/R, = 0.00114. Also here, with large void size
differences. the meshes at the two voids have been made closely identical. relative to void
size.

The curves in Fig. 5 show comparisons for four different levels of stress triaxiality,
corresponding to p values of 0.3, 0.5, 0.6, 0.7 and 0.9. For p = 0.5 localization of plastic
flow in the layers containing the voids occurs of &, = 0.336, for p = 0.6 localization occurs
at ¢, = 0.147, for ¢ = 0.7 and p = 0.9 localization occurs at g = 0.0422 and &, = 0.0079,
respectively. On the other hand, lor p = 0.3 the computation has been continued until
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Fig. 5. Stress strain curves and void growth for 4,/R, = 10, (%), = Tx 1074, (/4), = 7= 10" (a)

Axial tensile stress vs strain. (b) Total void volume vs strain. (¢) Growth of normalized void
volumes.

¢, = 1.08 without reaching (o).« or the onset of localization, and in this range v,/r, has
remained very close to unity.

Fig. Sb shows the relative increase of the total void volume, but the values shown for
V[V, are in fact practically identical to the values of ¢, since the void volume here is
completely dominated by the volume of the larger void. Fig. 5c¢ shows that the values v/,
initially tend to decay well below unity, as was also found in Fig. 4c for the two smaller
void volume fractions. The growth of the ratio v/, towards large values initiates when
elastic unloading occurs outside the layers containing the voids. Thus, for the spherical
voids considered here a strongly accelerated growth of very small voids due to the stress
fields around neighbouring larger voids is not found, in contrast to the results of Faleskog
and Shih (1997) for cylindrical voids. In the computations illustrated in Fig. 5 the very
rapid growth of the small void (to values as large as v»/v, = 67 for p = 0.9} is only a result
of the plastic flow localization with elastic unloading outside the narrow layer containing
the voids.

For p = 0.9 the stress triaxiality in the material is high enough so that a cavitation
instability would occur for a single void in an infinite solid (Huang er al., 1991 ; Tvergaard
et al., 1992). However, in Fig. 5, due to the rather large voids, the peak stress reached for
p =0.9i1s only g,/0, = 4.28, well below the level 5.70 required for a cavitation instability.
Also in the final growth stage in the localized band the local stress levels around the small
void are not high enough to give unstable cavity growth ; instead the macroscopic strain ¢,
keeps increasing slightly during void growth, and the larger void keeps growing slowly
while the small void grows rapidly.

The definition of a cavitation instability may be unclear in cases with a finite void
volume fraction, f. For a single void in an infinite solid the cavitation instability is reached
when the void grows without bounds for a constant state of stress and strain at infinity,
Void growth without further stress increase, dV/do, — o0, where V is the volume of one of
the voids, is commonly reached in materials with a finite void volume fraction (e.g. see
Tvergaard, 1982a). but this represents only the onset of damage induced softening. The
condition dV/de, — =« represents a real mechanical instability under prescribed edge dis-
placements, and this is the condition used here to define a cavitation instability. By the
same condition Tvergaard {1996, 1997) has determined cavitation instabilities in materials
with a finite void volume fraction. It 1s noted that the occurrence of this cavitation instability
condition is easily determined here, due to the special numerical procedure employed (see
below eqn (2.11)).

The initial undeformed mesh for all the computations in Fig. 5 is shown in Fig. 6a.
Furthermore. for the case where p = 0.7 a deformed mesh is shown in Fig. 6b corresponding
to a stage where ¢, = 0.042. ¢,/0, = 3.50, v, = 9.26 and ¢, = 268.5, i.e. well beyond the
onset of plastic flow localization. The growth of the larger void is directly visible in Fig.
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(a)

(b)
Fig. 6. Initial and deformed mesh for A/R, = 10, p = 0.7, (/5), = 7x 10 *. (%), = 10
g =0.0/o,=0.(b) Ate = 0.042, ¢,/5. = 3.50. v, = 9.26, 1:» = 269.
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Fig. 7. Stress-strain curves and void growth for 4,/R, = 10, (/%), = 7x 1077, (%), = 107", (a)
Axial tensile stress vs strain. (b) Total void volume vs strain. (¢) Growth of normalized void
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Fig. 8. Stress—strain curves and void growth for Ay R, = 10, (f¥), = Tx 10 *, (f%), = 10" ", (a)
Axial tensile stress vs strain. (b) Total void volume vs strain. (¢) Growth of normalized void
volumes.

6b: but the smaller void is still so small that it cannot be seen in the figure, even though its
relative growth has been much larger.

The effect of the initial size of the larger void is studied in Figs 7 and 8. in terms of
results for a 10 times larger void, (/3),=7x10"", or a 10 times smaller void,
(/%) =7x10"" In all these computations the initial size of the smaller void is kept
unchanged, as specified by (/3), = 107", In Fig. 7, for the rather large void. there is a clear
onset of localization for p = 0.5, but for the three larger values of p it appears that full
plastic yielding never takes place in the central part of the unit cell between the two
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voids. In all cases, the maximum stress levels reached are well below those reached in the
corresponding cases in Fig. 5, and also, the strain ¢, keeps increasing significantly after the
maximum stress point, so that neither of these cases are anywhere near the occurrence of a
cavitation instability at the small void. Thus, as in Fig. 5, the final more rapid growth of
the smaller void illustrated in Fig. 7¢ is not basically a result of stress concentrations around
the larger void, but occurs due to the localized plastic yielding and the associated more
constrained plastic flow in the layers containing the voids.

In Fig. 8 the maximum stress levels reached are higher than those reached in Fig. 5,
and much higher than those in Fig. 7. Also the values of the overall strain ¢, at the onset
of localization are much increased when the initial void size is reduced, as is seen by
comparison of Figs 8, 5 and 7, and the same tendency is seen for the values of relative void
growth, F'/V,and v,. For the highest level of stress triaxiality, p = 0.9 in Fig. 8, the maximum
average stress reached is 7,/a, = 5.20, still well below the cavitation instability level of 5.70.
Here, there is never complete plastic yielding in the central part of the unit cell, but the
final mode of deformation is still dominated by localized plastic flow in the layers of
material containing the voids. After that the peak stress is reached, the overall strain g,
grows very little, and also the value of 1:; grows only slowly, while the small void (1) grows
rapidly. At this stage the local stress field around the small void is characterized by levels
of hydrostatic tension, o},3, around 5.16,, which is rather close to the level 6}/3 = 5.320,.
at which a cavitation instability would occur for a single void in an infinite solid (Tvergaard
et al., 1992).

When the present unit cell analyses are employed to study material behaviour and
fracture by void coalescence in front of a crack tip, the maximum average tensile stress is
limited by the maximum stress levels reached ahead of the crack front. For a blunting crack
tip in a power hardening elastic-plastic material with N = 0.1, ¢,/E = 1/300 and v = 0.3
McMeeking (1977) has computed the value of the maximum stress normal 1o the crack
plane ahead of the cracks as (o,/0,),,,, = 3.8. For plastic yielding in material well ahead of
the crack tip it is often assumed that a uniaxial strain state gives a good approximation, as
can be represented in the present cell model by an appropriate choice of p (near unity) in
each increment. However, the stress peak ahead of the crack, (0,/6,)y,, = 3.8, cannot be
exceeded ; in fact the peak stress reached is a good measure of the constraint on plastic flow
enforced by the strain fields in the near tip region. Therefore, in terms of the present cell
model analysis, the attainment of the correct value of the peak stress must be used to choose
the value of p that gives the best approximation to the behaviour in front of a crack tip.
Based on this criterion the appropriate values of p in Figs 5and 8 are p ~ 0.67 and p ~ 0.61,
respectively. But in Fig. 7 it is seen that the larger void is so dominant that the peak values
reached for o,/0, are way below the value 3.8 for all levels of stress triaxiality considered.
For the smaller values of {f¥),, in Figs 5 and 8, the curves showing a peak stress close to
that ahead of a crack tip do not actually predict a cavitation instability for the tiny void
between larger voids. The behaviour in these cases is strongly dominated by the occurrence
of plastic flow localization, and the much faster growth of the small void is only predicted
after the onset of localization, where the local constraint on plastic flow is suddenly changed
due to elastic unloading outside the band.

The studies discussed so far have focused on cell models with 4,/R, = 10. thus rep-
resenting interaction of different size voids inside isolated layers of material normal to the
maximum tensile stress. By contrast, the studies in Tvergaard (1996) are carried out
for about equal spacings in axial and transverse directions, 4,/R, = 2. which allows for
interactions between neighbouring voids in the axial direction as well as the transverse
directions. To get a parametric understanding of the effect of the spacing 4, i the axial
direction, computations have been carried out for values of 4,/ R, ranging from 2 to 16, as
illustrated in Fig. 9. These computations are carried out for (%), = 7x 107% (f%), = 10
and p = 0.7, so that the curves for 4,/R, = 10 are identical to the curves for p = 0.7 in
Fig. 5. Thus, in all cases the void radii relative to the cell radius are R,/R, = 0.219 and
R,/Ry = 0.00114, respectively. The computation for 4,/R, =2 in Fig. 9 is not directly
comparable with results in Tvergaard (1996), where the initial void volume ratios are 7,
since in Fig. 9 the smaller void is extremely small compared to the larger void.
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Fig. 9. Stress strain curves and void growth for AR, =10, p=07, (), =7x10"",
(%), = 10", (a) Axial tensile stress vs strain. (b} Total void volume vs strain. (¢) Growth of

normalized void volumes.

In Fig. 9a it is seen that localization of plastic flow, with the resulting rapid decay of
the average tensile stress, occurs earlier the larger the value of 4,/R,, and the corresponding
effect on the growth of the total void volume is seen in Fig. 9b. Also, in Fig. 9¢, for 4,/ R,
in the range from 16 to 4, the ratio v,/v, initially decays and then starts to grow rapidly
when flow localization has occurred. as has been found in most of the previous figures.
Only one of the cases. A,/ R, = 2, differs from the others in that no elastic unloading occurs
in the unit cell between the two voids, and thus there is no flow localization. The effect of
this difference 1s most clearly seen in Fig. 9c, where the ratio v,/v, remains near unity during
much void growth and then starts to increase rather slowly.

The comparison in Fig. 9 illustrates clearly that the very rapid growth of the tiny void
between larger voids. as also found in the final stages of deformation in Figs 5, 7 and 9, is
strongly dependent on the occurrence of elastic unloading in the material outside the layer
containing the voids with the associated increase of the constraint on plastic flow. For the
material with approximately equal void spacings in axial and transverse directions,
Ayf Ry = 2. where the relative spacings are approximately equal to those in the plane strain
study of Faleskog and Shih (1997), the growth rate of the tiny void is not strongly amplified
by the three dimensional stress fields around the larger spherical voids.

4. DISCUSSION

The present axisymmetric unit cell studies have been used to investigate the effect of
cavitation instabilities on void coalescence in stress states corresponding to those in front
of a growing crack. Even though the peak value of the average stress in front of a blunting
crack is well below the stress level required for cavitation instabilities (Huang er «/.. 1991 ;
Tvergaard ez al., 1992), the local stress level in material between two larger voids is increased
relative to the average stress, and very small voids in such regions could experience a
cavitation instability. For a square array of larger cylindrical voids, in a plane strain unit
cell study. Faleskog and Shih (1997) have found some indication that this type of void
coalescence mechanism could be active. The axisymmetric analyses with the special bound-
ary conditions used in the present paper allow for a relatively simple investigation of similar
behaviour in a full three dimensional array of spherical voids, without having to solve the
full three dimensional numerical probiem.

A fixed ratio p of the average true stresses in transverse and axial directions is prescribed
in the present cell model studies. This may not exactly reproduce stress states in front of
crack tips. but it is fairly easy in each case to identify the maximum value of p that could
be relevant, since the predicted stress maximum cannot exceed the peak stress ahead of a
crack in a void free material. For the smallest void volume fraction analysed here, this
means that the value of p cannot exceed 0.61, which is far below the value required for
unstable growth of a single cavity in an infinite solid. Thus a cavitation instability for a
small void would have to rely on local stress increases between the larger voids ; but none
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of the cases studied have shown such behaviour in the relevant range of p values. For a
case with about equal void spacings in axial and transverse directions (A4y/R; = 2), some-
what similar to the spacings used by Faleskog and Shih (1997), the present predictions are
nowhere near unstable growth of the smaller void. It must be concluded that the effects of
local stress increases in material between larger voids is much less dominant in a three
dimensional array of spherical voids than that found in a plane strain study for cylindrical
voids.

Localization of plastic flow plays an important role in most of the present studies,
where the axial void spacing has been chosen much larger than the transverse spacing (often
Ao/ Ry = 10). Here, elastic unloading occurs throughout most of the unit cell shortly after
the maximum load point, and all subsequent plastic flow is concentrated in the thin layers
of material containing the voids. In such thin layers of elastic-plastic material between
elastic material regions plastic flow is highly constrained, and it is well known that
sufficiently small voids in such layers will experience cavitation instabilities (Tvergaard,
1991, 1997). In the present studies, where small voids interact with much larger voids inside
the thin plastic layers, a full cavitation instability is not reached; but some cases are
close, and all cases show much more rapid growth of the smaller voids after the onset of
localization.

Simultaneous localization of plastic flow in a number of parallel material layers, as
predicted by the present cell model, is a feature of the periodicity assumed in the cell model ;
but the interest here is only in the interaction between different size voids within one of the
layers. In the highly strained region just ahead of a crack tip only one such material layer
with void growth to coalescence tends to develop, due to the highly nonuniform strain field
(see Needleman and Tvergaard, 1987 Tvergaard and Needleman, 1992). In cases where
deformations occur at a high rate, ¢.g. inside an adiabatic shear band as studied by Cortés
and Elices (1993), thermal softening will occur, and this may further promote the possibility
of unstable cavity growth.

An actual alloy may contain more than two size scales of inclusions. For such alloys
it has been suggested by Faleskog and Shih (1997) that a process of cavitation instability
at very small voids, induced by local stress increases between larger neighbouring voids,
will repeat itself with the even smaller size scale of voids, thus giving rise to cascading load
drops. This kind of effect might enhance the influence of different size scales, even in the
full three dimensional array of voids. But there is an opposite effect of size, discussed by
Fleck and Hutchinson (1996) in the context of strain gradient plasticity, which has not
been included in the present analyses for spherical voids, nor in the previous plane strain
study for cylindrical voids. It is suggested based on dislocation theory that the plastic flow
strength increases significantly if the plastic strain gradient is large over distances com-
parable with the dislocation spacing or the elastic cell size within the dislocation structure,
and this would strongly reduce predicted growth rates for very small voids.
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